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On the Study of Microstrip Ring and
Varactor-Tuned Ring Circuits

KAT CHANG, SENIOR MEMBER, IEEE, SCOTT MARTIN, FUCHEN WANG, anD JAMES L. KLEIN

Abstract —Equivalent circuits have been derived for microstrip ring and
varactor-tuned ring resonators. It was found that the resonant frequency is
slightly lower as the coupling gap becomes smaller. Varactor-tuned ring
resonators have been developed with up to 15 percent tuning bandwidth
using packaged varactor diodes. A dielectrically loaded microstrip ring
circuit with lower loss was demonstrated. The results should have many
applications in electronically tunable oscillators and filters in both hybrid
and monolithic integrated circuits.

1. INTRODUCTION

ICROSTRIP RESONATORS have been widely

used for the measurement of dispersion, phase
velocity, and effective dielectric constant [1]-[5]. Two types
of resonators are generally used: linear resonators and ring
resonators. The ring resonator has the advantage of free-
dom from open-end effects.

Microstrip ring resonators have been studied extensively
in the open literature [6]-[11]. Most studies use a field
theory approach to investigate the effects of line width,
curvature, and dispersion on the resonant frequency. An
open-ring resonator with a gap inside the ring was also
investigated using a magnetic wall model and perturbation
analysis [10], [11]. However, an area that has been ne-
glected is the effect of the coupling gap on the resonant
frequency.

The design of the ring dimensions is quite straightfor-
ward. A microstrip ring structure resonates if its electrical
length is an integral multiple of the guide wavelength. The
size of the coupling gap determines the coupling between
the microstrip line and the resonator. For better accuracy,
it was recognized that excessive loading effects, which
would otherwise affect the measurements, should be mini-
mized by loosely coupling the resonator to an external
circuit. However, no quantitative analysis of the effects of
coupling gaps has been reported in the literature.

To assess the effects of the coupling gap on the resonant
frequency, an equivalent circuit for the ring resonator,
including the effects of coupling gaps, has been developed.
It was found that the resonant frequency decreases slightly
as the coupling gap becomes smaller. For most ranges of
gap size, the effects on resonant frequency are small and
negligible,
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The ring can be used as a filter or a stabilization circuit
for oscillators. In many applications, it is desirable to have
a stable, electronically tunable oscillator. Most frequency-
stabilized circuits use dielectric resonators or waveguide
cavity circuits which are generally difficult to tune elec-
tronically [12]-{16]. This paper reports ring resonator cir-
cuits which can be easily fabricated and electronically
tuned over a wide frequency range using varactor diodes.
Unlike the dielectric resonators, the circuits are amenable
to monolithic implementation.

Analysis based upon transmission line theory was devel-
oped to model the ring resonator circuits. Three types of
varactor-loaded circuits were investigated: a varactor diode
mounted inside the ring, two varactor diodes mounted
inside the ring, and a varactor diode mounted in the
coupling gap. It was found that the ring varactor-loaded
circuit gives much wider tuning range than the coupling
gap varactor-loaded circuit. The experimental tuning
bandwidth agrees fairly well with the theoretical predic-
tion.

Different tuning ranges were obtained with various
varactor diodes. Up to 15 percent tuning bandwidth was
achieved using M/A COM packaged abrupt junction
varactor diodes. It is believed that much wider tuning
bandwidth could be achieved by the use of hyperabrupt
junction beam-lead varactor diodes.

The coupling loss could be high for a ring resonator with
discontinuities and loose coupling. One way to reduce the
loss is to overlay the microstrip ring with dielectric layers.
Experimental results have shown that the loss can be
reduced substantially with a proper covering. A variational
method was used to calculate the effects of overlaid layers
on the effective dielectric constant and characteristic im-
pedance. The theoretical calculations checked very well
with the experimental results. The same techniques can be
applied to other components and discontinuities.

II. - EFFECTS OF COUPLING GAP ON MICROSTRIP
RING RESONATORS

A. Equivalent Circuit

If a microstrip line is formed as a closed loop on a
substrate as shown in Fig. 1, it resonates at certain fre-
quencies. Without consideration of loading effects, the
resonant frequencies can be determined by assuming that
the structure will support only waves that have an integral
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Fig. 1.

A ring resonator.

multiple of the wavelength equal to the mean cir-
cumference of the ring. This may be expressed as

forn=1.2,3,--- 1)

where r is the mean radius of the ring and A is the guide
wavelength.

To use the ring for measurement, the ring has to be
coupled to an external circuit. This coupling tends to load
the ring and thus changes the resonant frequency slightly.

Assuming the two coupling gaps are of the same size,
the equivalent circuit of ring resonator is given in Fig. 2.
Each half section of ring is represented by a T network
with [4, ch. 1]

n)\g= 2ar

Bl
Z,= jZytan Py

Z,=— jZ,cscBl

(2)
(3)

where
B=2m/A,
Z, = line characteristic impedance
l=mar.

The coupling gap is modeled by a @-network with C,;
and C, found from [17] and [18]. It should be noted that
there is an error in the calculation of C,,, in [17] and [18].
The corrected expression is [19]

Con/w(pE/m) =12( =) “ep (k) @

where s is the size of the coupling gap and w is the line
width.
The definitions for m, and &, can be found by [17], [18]

M
w

w012
m,=0.8675 = 2.043(;) for 0.1<s/w<0.3
1.565 ) K —1.97 0.03
© Oy T W

for0.3<s/w<1.0

where 4 is the thickness of substrate.
For an arbitrary termination of R ohms, the input
impedance can be determined by
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Fig. 2. Equivalent circuit of ring resonator.

where
oo AZ}
(24)+(z,-2B-2,)°

Z}7,~2B~7,)

D':l (z - 2 2
24y +(Z,-2B-7,)

2

a Zb)
and
RC}
A= 2 3
(G + G +[wR(C+20,G,)]

(G G+ R G +2C,G)(C +C)
w(C + G+ w[wR(CE+2¢,G)]

The input impedance is

Ziy(0) = Ryy(0) + jXin(@). (™)

The resonant frequency can be determined by solving
X,,(w) = 0 or S;; = minimum using the bisectional numeri-
cal method.

B. Theoretical and Experimental Results

A computer program has been developed to facilitate
the calculation. The resonant frequency as a function of
gap size is shown in Fig. 3. It can be seen that the resonant
frequency is almost constant until the gap becomes very
small.

Experiments were carried out to verify the theoretical
calculation. The ring was fabricated on Duroid 5870 sub-
strate with 1.62 mm thickness. The experimental results for
several gap sizes are also shown in Fig. 3 for comparison.

The unloaded Q for a ring resonator designed at the
fundamental resonant frequency of 3.4 GHz is about 180,
which agrees with the theoretical results for a typical
microstrip line [20]. The loaded Q varies from 20 to 170

G+ O)|(C+ G)—wD(F +20,G)] + [2(C1+ G) — w7 [ec(C? +2C,G,)]

Rm(w)

X

[(C,+ )= wD(CF+20,G,)]* +[wC(CE+2C,G,)]
(¢ +G) =0 [(C + G) — 0D (CE+2C,G)] - «CHC + G)(CF +2C,G)]

> (5)

1n(w

[(C,+ C) - wD(C2+2C,G,)] + [wC(C? +2¢,0,)]

(6)
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Fig. 4. Loaded Q for a resonant ring as a function of coupling gap size.
The parameters used for this experiment are ¢, =2.2, & =0.76 mm,
w =235 mm, and r=10.29 mm.

depending on the gap size and the mode number. Fig. 4
shows the measured loaded Q as a function of gap size for
n=1 and n =5 modes. It can be seen that the loaded Q is
lower for the tight coupling case.

Theoretical results of the input impedance for a typical
ring show that the ring resonator has a series resonant
frequency (f;) and a parallel resonant frequency (f,). An
. example is given in Fig, 5 for an 8-GHz resonator. The two
resonant frequencies are very close to each other. This is
reminiscent of a stable piezoelectric crystal oscillator [21]
where the circuit will oscillate at a frequency which lies
between f, and f, but close to the parallel resonance
value. The closer f, and f, are, the more certain is the
resonant frequency. Fig. 6 shows the difference (Af) be-
tween the parallel resonance and series resonance as a
function of gap size. It can be seen that for ring resonators
with tight coupling (small coupling gaps) the frequency
difference Af is relatively large. As the coupling gap is
increased, the series and parallel resonant frequencies ap-
proach each other.
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Fig 6. The difference between parallel and series resonance frequency
as a function of gap size.

III. VARACTOR-TUNED RING RESONATORS

Three types of varactor-loaded circuits were investi-
gated: a varactor diode mounted inside the ring, two
varactor diodes mounted inside the ring, and a varactor
diode mounted in the coupling gap.

A. Varactor Diode Mounted inside the Ring

The circuit with a varactor diode mounted inside the
ring is shown in Fig. 7. Two small gaps were cut in the
ring. The gap at the top of the ring is used for varactor
mounting. The bottom gap was used for mounting a fixed
value dc block capacitor. Bias is supplied through the bias
lines. If a big fixed capacitor is mounted in the bottom
gap, the equivalent circuit is shown in Fig. 8. As in Fig. 2,
the transmission line is represented by a T network and the
coupling gaps are modeled by a gap series capacitance
(C,) together with two fringe capacitances (C,).

Z, can be modeled by a varactor diode in parallel with a
gap capacitance C,, as shown in Fig. 9. For a packaged
diode, the varactor can be represented by a variable junc-
tion capacitance C (v) in series with a lead inductance L.
The package capacitance is accounted for by C,. The
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Bias

/—— Varactor mounting

Ground;

Fig. 7. Varactor-tuned ring resonator circuit with a varactor diode
mounted inside the ring.

Fig. 8. Equivalent circuit of varactor-tuned ring.
R, Cj{v) L,
o—(L 1————0

il
1
Cp
I
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C2

Fig. 9. Equivalent circuit of the varactor diode and mounting gap.

fringe capacitances (C;) are small and negligible. The
series resistance of the varactor is given by R _.

The input impedance looking into the ring at the gap
can be calculated by solving the five loop equations
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The input impedance Z;, can be found by using (5) and
(6) and replacing C and D by C’ and D', respectively. The
resonant frequency is determined by solving the nonlinear
equation for X (w)=0 using the bisectional numerical
method. The dispersion effect of microstrip is included in
the analysis.

In the measurement of a ring with a gap in the middle of
the top half of the ring, it was found that the odd-number
modes disappeared. This can be easily explained by ex-
amining the boundary conditions imposed on a ring that is
broken at a certain point. As shown in Fig. 10, each point
that has an open circuit will result in a maximum electric
field. For the even modes the break occurs at the electric
field maximum and thus the fields are virtvally undis-
turbed. For odd modes the break occurs at what should be
an electric field null point; the boundary condition re-
quires the maximum field at the break point and the mode
is therefore not present. The break point in the ring also
introduces the half-modes-which have a positive maximum
at one side of the break point and a negative maximum at

Z,+Zys ~Z 0 0 0 i |24
-7, Z,+Zy+2Z} zZ; 0 0 iy 0
0 zZ; Za+Zu+2; -Z, 0 iy =10 (8)
0 0 - Zy 2Z, V27, + Z, - Zy iy 0
0 0 0 - Zy Za+Zul \is 14
|14
Z'=C'+ jD' = —— (9)

1+ i
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Fig. 11 Resonant frequency of a varactor-tuned ring as a function of
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Fig. 12. Measured resonant frequency of a varactor-tuned ning as a
function of varactor tuning capacitance for a circuit with two varactor
diodes mounted inside the ring.

the other side. It is these modes that will be effectively
tuned by the varactor.

A resonant ring was fabricated on Duroid 6010 sub-
strate with 0.635-mm thickness. The theoretical and experi-
mental tuning curves as a function of tuning capacitance
are shown in Fig. 11. The resonant frequency was tuned
from 2.9 to 3.2 GHz. The varactor used here is from M /A
COM (Model 46600) with a capacitance varied from 0.5 to
2.5 pF. It is believed that a much wider tuning range can
be achieved if a hyperabrupt junction varactor diode is
used. The experimental tuning bandwidth agrees very well
with the theoretical prediction from the circuit model. The
discrepancies are mainly due to the estimate in the package
parasitics.

B. Two Varactor Diodes Mounted inside the Ring

The bottom gap shown in Fig. 7 can be used to mount
another varactor diode instead of a fixed-value capacitor.
In this case, we have two varactor diodes mounted inside
the ring and the tuning range can be substantially in-
creased. Fig. 12 shows the experimental results obtained
by using the ring described in subsection A. The tuning
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Fig. 14. Resonant frequency of a varactor-tuned ring as a function of
varactor capacitance for a circuit with a varactor mounted across the

coupling gap

bandwidth 1s about 15 percent. Theoretical results can be
obtained by modifying the equivalent circuit given by
Fig. 8.

C. A Varactor Diode Mounted across the Coupling Gap

A coupling gap varactor-loaded circuit, shown in Fig.
13, was also fabricated and tested. The resonant frequency
varies with the varactor capacitance, as shown in Fig. 14.
It can be seen that the resonant frequency and loaded Q
decrease as the varactor capacitance increases. Since a big
varactor capacitance corresponds to a small coupling gap,
these results agrees with the gap effects on resonant
frequency and loaded Q described in Section II. This
circuit only works for a small value of capacitance since a
large capacitance will bridge the coupling gap and the ring
will no longer behave as a resonator. The circuit has
limited applications due to its narrow tuning bandwidth.
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IV. DIELECTRICALLY LOADED MICROSTRIP
CIRCUITS

To reduce the coupling loss of the ring resonator, a
dielectrically loaded (or dielectrically shielded) microstrip
circuit was investigated. The overlaid dielectric layer in-
creases the electric field coupling across the gap, resulting
in a larger coupling capacitance. This is equivalent to a
smaller effective coupling gap. The covering also reduces
the radiation loss. Rings were built using the characteristic
impedance and guide wavelength calculated based on a
theoretical analysis.

The dielectrically loaded circuit is shown in Fig. 15. A
microstrip line with a width w, a dielectric constant €, and
a substrate thickness h, is covered by another dielectric
layer of thickness 4, and dielectric constant of €,. For low
loss, €, is chosen to be greater than ;. Both coupling loss
and radiation loss are substantially reduced by the cover-
ing.

Analyses of a microstrip covered by a dielectric layer
have been reported in the literature [22]-[24]. A variational
method based on Green’s function was used to solve the
line capacitance as associated with this geometry for its
simplicity [22]. By assuming a trial function of charge
distribution along the line, we can solve the line capaci-
tance C as given below:

_ (1+0.254)
7Y @rY) 1)

n=odd

where
T,=(L,+AM,)’
L,=sin(B,w/2)

Tl )
[(B2 -l )

2 ( : )2
P =—
nw |\ B,w

> (L,—4M,)L,P,/Y
n = odd

Z (Ln —4Mn)MnPn/Y )
n=odd

A=—

Y is the admittance seen by the strip at the conductor
plane. The effective dielectric constant can be found from
< (1)

€ =

eff C

a

with C, the line capacitance when the dielectric substrates

are absent. The characteristic impedance of the line can be
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Fig. 15. Dielectrically loaded microstrip line.
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Fig. 16. Effective dielectric constant as a function of thickness for
covering substrate with a dielectric constant of 10.5.

found by )

Zy=~ ool
where c¢ is the speed of light.

Ring resonators have been fabricated to confirm the
theoretical results. From the measurement of the resonant
frequency, one can calculate the effective dielectric con-
stant by the following equation:

€ett = ( 2’”"fr\’ (13)

where r is the mean radius of the ring, f, is the resonant
frequency, and » is the number of operating mode.

Fig. 16 shows the comparison of the calculated effective
dielectric constant with the experimental results for differ-
ent covering dielectric thickness. The covering substrate
has a dielectric constant of 10.5. The microstrip used for
the experiment has a substrate thickness of 1.57 mm and a
dielectric constant of 2.33. It can be seen that the effective
dielectric constant increases with the covering substrate
thickness. The theory agrees quite well with the experimen-
tal data. The slight difference is believed due to the small
air gap that exists between the microstrip and the covering
layer.

The ring resonator generally has a high insertion loss
due to the discontinuities and loose coupling between the
ring and lines. By utilizing a dielectric overlaid layer, the
coupling can be enhanced and the loss can be substantially
reduced.

(12)
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Fig. 17 shows the effects of the dielectric covering layer.
The total loss of the ring can be reduced to less than 1 dB
by using a thick dielectric layer. The covering material has
a dielectric constant of 10.5. The rings were designed based
upon the calculated effective dielectric constant using (10)
and (11). It can be seen that the dielectric layer effectively
increases the coupling and reduces the insertion loss.

The covering layer changes the guide wavelength and
resonant {requency. The resonant frequency can be de-
termined by the calculated effective dielectric constant.
Fig. 18 shows both the calculated and the measured results
for a ring covered with different dielectric thicknesses. The
resonant frequency drops substantially with the increase of
covering thickness. Since the dielectric covering increases
the coupling, which is equivalent to a smaller effective
coupling gap. the loaded Q decreases as the covering
thickness is increased.

V. CONCLUSIONS

Equivalent circuits have been derived for microstrip ring
and varactor-tuned ring resonators. It was found that the
resonant frequency is slightly lower as the coupling gap
becomes smaller. The effects are small and generally
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negligible unless a very small coupling gap is used. Varac-
tor-tuned ring resonators were developed with a tuning
bandwidth of up to 15 percent of the operating frequency.
A dielectrically loaded technique was demonstrated in
reducing the insertion loss of the resonant ring to less than
1 dB. The results presented should have many applications
in microwave measurements, electronically tunable filters,
and varactor-tuned oscillators.
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